新闻中心
儿童精准肿瘤学中一种切实可行的数字药物方案创新计算分析方法
上传日期:2023-12-19 信息来源: 查看:607次

一项研究题为《Real world performance analysis of a novel computational method in the precision oncology of pediatric tumors》,于2023101日发表在《世界儿科杂志》上。由Oncompass Medicine Inc.的创始人兼首席执行官(István Peták)伊斯特万•佩塔克博士领导的团队研究分析了DDADigital drug assignment)在鉴定高危儿科癌症患者有效药物治疗方案方面的实际表现。


DDA是一种尖端的经由人工智能(AI)辅助的计算方法,整合了多个基于证据的驱动因子、靶点和靶向药物之间的关联,以优先考虑治疗选项。它已经通过SHIVA01临床试验中接受治疗的成年患者的结果数据验证,以改善基于个体化数据的治疗决策。

该研究分析了DDA在优先选择高危儿科癌症患者治疗选项方面的实际表现。研究人员使用荧光原位杂交(FISH)等分析来识别推动儿科肿瘤的基因突变,进而帮助指导选择有效的药物治疗。组织或血液样本通过全外显子(WES)或靶向面板测序等分子诊断方法进行分析,并由使用DDA算法的软件系统进行治疗决策支持。最后,分子肿瘤委员会(MTB)评估结果并提供建议。
 

研究发现,DDA在鉴定儿科肿瘤患者有效药物治疗方案方面表现出有希望的结果。通过分析大量基因组数据,DDA可以迅速识别与患者肿瘤特定基因突变相适应的潜在药物治疗方案。这种个性化的治疗选择方法有望改善患者预后并减少不良副作用的风险。

总体而言,DDA是一种有望改善儿科肿瘤患者治疗选择速度和准确性的计算方法。该研究的发现突显了DDA改善个体化治疗决策、最终改善患者预后的潜力。

对深入了解DDA感兴趣的读者或团队可从以下链接获取全文:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10497647/pdf/12519_2023_Article_700.pdf

免责声明:本新闻报道并不旨在提供医疗建议或支持特定的治疗方法。请始终咨询医疗专业人员以获取准确的诊断和治疗选项。

技术支持

点击给我留言